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Abstract. This paper illustrates the idea
of parallel distributed parsing (PDP),
which allows us to integrate lexical and
sublexical analyses. PDP is proposed
for providing a new model of efficient,
information-rich parses that can remedy
the data sparseness problem.

1 Introduction
In the usual sense of syntactic parsing, the analy-
ses of relationships among words and relationships
among morphemes are separated. The former is
called syntactic analysis (or syntactic parsing) and
the latter is called morphological analysis (the term
“morphological parsing” exists but it seems to de-
note a somewhat different notion). Sometimes, how-
ever, sublexical analysis is relevant. This is evident
in shallow semantic parsing which is understood to
be “labeling phrases of a sentence with semantic
roles with respect to a target word. For example,
the sentence (1) is labeled as (2):”1)

(1) Shaw Publishing offered Mr. Smith a reim-
bursement last March.

(2) [Agent Shaw Publishing ] offered [Recipient Mr.
Smith ] [Theme a reimbursement ] [Time last
March ] .

The target of the labeling in (2) is offered. Note that
the same kind of labeling should be available for the
argument structure of reimbursement, which can be
illustrated in (3):

(3) [Payer(asAgent) Shaw Publishing] offered
[Recipient Mr. Smith ] a [Target reimburse]-ment
last March. (No explicit mention of Payment
(as Theme))

Clearly, semantic role labeling requires a high-
precision predicate-argument analysis of a given tar-
get predicate, whether the target is a word (e.g., of-
fer) or a morpheme (e.g., reimburse) embedded in a
word. The comparison of the two cases above shows
1) The example and explanation were taken from
http://nlp.stanford.edu/projects/
shallow-parsing.shtml.

that a certain kind of parsing is necessary in effec-
tive semantic labeling, as Gildea and Palmer (2002)
pointed out. But the problem is how to combine the
lexical parse by which the predicate-argument struc-
ture of offer is recognized with the sublexical parse
by which the predicate-argument structure of reim-
burse is recognized. Integrating the two kinds of
parses is not a trivial task.

This paper presents the idea of Parallel Dis-
tributed Parsing (PDP) that is able to straightfor-
wardly carry out the integration. The presentation,
however, is theoretically oriented and the content
is rather preliminary: no empirical results are pre-
sented other than a few sample parses. No parser
implementation is available. The main purpose of
this presentation is to illustrate a new model for pars-
ing that integrates lexical and sublexical parsings,
which I argue can be a remedy for the problem of
data sparseness.

Data sparseness is a serious problem in natural
language processing (NLP) even now that comput-
ers can access more raw data than the average hu-
man does. The size of textual raw data automat-
ically acquired from the Web exceeds that which
a normal human can read in a lifetime. This sug-
gests, however, that no human seems to suffer from
data sparseness. What makes this more mysterious
is that humans do also employ statistical informa-
tion in their language processing. The difference be-
tween humans and machines, therefore, should lie in
the difference in efficiency with which they acquire
knowledge, be it is syntactic, semantic or morpho-
logical, from linguistic data given. Humans are cer-
tainly, at the present, able to acquire knowledge far
more efficiently than computers. The crucial ques-
tion is: How is this possible?

I argue that data sparseness is a problem in NLP
not only because distributional data itself is sparse,
but also because parses availabe today are sparse
and inefficient; otherwise, data sparseness should
impact human language processing in the same way
it does computers. The explanation I consider is
that data contains enough information but current
technologies fail to extract it due to inefficiency of
available parses. PDP is proposed to make parses
of linguistic data more efficient and less sparse. In
what follows, I show how PDP can remedy the data
sparseness.

2 Efficient parsing with PDP

2.1 Preliminaries
To begin with, take the example (4):

(4) a. Ann gave Bill a headache
b. Ann gave Bill a hug.



On reading (4a), we, as human, understand at
least the following:

(5) a. CAUSE(x, z, t1, . . . )
b. x=Ann, z=EXPERIENCE(y, a headache,

t2, . . . ), y=Bill, t2 ⊂ t1 ⊂ PAST
c. ; z′= HEADACHE(x, y, t2, . . . ), t2 ⊂

t1 ⊂ PAST

On reading (4b), we, as human, understand at
least the following:

(6) a. CAUSE(x, z, t1, . . . )
b. x=Ann, z= EXPERIENCE(y, a hug, t2,

. . . ), y=Bill, t2 ⊂ t1 ⊂ PAST
c. ⇒ z′= HUG(x, y, t2, . . . ), t2 ⊂ t1 ⊂ PAST

We have at least the following problems: i) Why
do we have CAUSE(. . . ) for the semantics of
give? ii) Why do we have the different elabora-
tions for z-term? Namely, why do we have HUG(x,
y, . . . ) in (4b) and not have HEADACHE(x, y,
. . . ) in (4a)? More specifically, how can we
elaborate CAUSE(x, EXPERIENCE(y, a hug), . . . )
into CAUSE(x, HUG(x, y), . . . ) and not elaborate
CAUSE(x, EXPERIENCE(y, a headache), . . . ) into
*CAUSE(x, HEADACHE(x, y), . . . )?2)

Putting aside the first problem, I limit myself to
the second problem. The difference lies in the dif-
ference in the semantic structures of headache and
hug, which is obvious. The question I want to ad-
dress is: Does syntactic parsing/analysis play no
role in this kind of elaboration? I raise this ques-
tion based on the following contrast:

(7) a. *Ann headaches Bill. [cf. Bill aches in the
head.]

b. Ann hugs Bill.

This contrast indicates that transitive use of
headache is disallowed whereas transitive use of hug
is allowed.3) I argue that the contrast in (7) is ex-
actly the information that we need for the elabo-
ration of CAUSE(x, EXPERIENCE(y, a hug), . . . )
into CAUSE(x, HUG(x, y), . . . ).

Many theories of parsing are happily posit that
such information can be obtained by accessing the
“lexicon” and syntactic parsing can (and should) be
freed from it. The process by which we arrive at tar-
geted semantic elaboration is called a series of “in-
ferences.” But nothing prevents us from doubting
this position, especially when we are ready to ex-
pand the scope of syntactic parsing to include the
recognition of as many semantic relations in a given
input as possible. The problem of data sparseness
2) Technically, causation is nonreflexive transitive in (4a) and re-

flexive transitive in (4b).
3) This is simply because the latter is a zero-derived form of a

verb hug; kiss is a similar case.

encourages this expansion of the scope, because it is
a key to overcoming the data sparseness mentioned
earlier.

The greatest technical problem, of course, is how
to encode semantic information in syntactic pars-
ing without considerably increasing the complex-
ity in parsing and incompatibility with orthodox
(tree-based) parsing. The framework of parallel dis-
tributed parsing (PDP) is proposed for meeting such
requirements in the most straightforward way.

2.2 Sample PDPs
An implicit assumption under the traditional view of
syntactic parsing is that not enough information is
available on the surface to obtain such “inferences.”
But this assumption turns out to simply be wrong if
we are allowed to apply sublexical parsings of (4a)
and (4b) that account for the difference in (7).

Table 1: PDP of (4a)

e=p0 Ann gave Bill a head ache
p1 Ann V
p2 S gave O1 O2
p3 S V Bill
p4 (S) (V) (O) a (M) T
p5 (S) (V) (O) D head T
p6 S M1 M2* ache

Table 2: PDP of (4b)

e=p0 Ann gave Bill a hug
p1 Ann V
p2 S gave O1 O2
p3 S V Bill
p4 (S) (V) (O) a T
p5 S O* M hug

2.2.1 Basics. For illustration, sample PDPs of (4a)
and (4b) are given in Tables 1 and 2. The PDP of
input e results in a set of n parses when e has n seg-
ments. This is presented in table form as in the two
tables. The first row of the table represents the input
under a certain type of segmentation. The other rows
below represent parses of n segments, p1, p2, . . . , pn
which specify the parses of the 1st, 2nd, . . . nth seg-
ment of the input. These are called “patterns.”

Each parse is a string-like object that consists of
“constants” (e.g., Ann, gave, Bill, a, head and ache)
and “variables” (e.g., S, O, V, P, etc). Constants in
a pattern are called the pattern’s “anchors.” To en-
hance readability, anchors are usually in italics. Note
that anchors usually appear on the diagonal in PDP.

Variables serve as “matching sites” or “binding
sites” because they encode the information neces-
sary to integrate a set of patterns. Patterns p =



[u1,u2, . . . ,um] and q = [v1,v2, . . . ,vn] are unified if
and only if (i) they have the same number of seg-
ments (i.e. m = n) and (ii) either IS-A(ui,vi) or IS-
A(vi,ui) holds. Variables license the IS-A relation.
In some cases, variables are put in parentheses to in-
dicate that they encode conditional information.

Take some examples. “S gave O1 O2” is a pat-
tern that specifies the predicate-argument structure
of gave. Likewise, “S V Bill O2” is a pattern that
specifies the predicate-argument structure that ac-
counts for the presence of Bill in this input. This
form of encoding is called the “co-occurrence struc-
ture” of Bill, because Bill, as a noun phrase, does
not have a predicate-argument structure of its own.
Case assignment is involved in co-occurrence struc-
ture. Compare ϕ1: “Bill V,” ϕ2: “S V Bill” and ϕ3:
“S V P Bill,” each of which specifies a co-occurrence
structure of Bill. ϕ1 specifies the nominative form of
Bill, and ϕ2 and ϕ3 the accusative form of it, though
ϕ2 and ϕ3 are not really the same.4)

Relational nouns (e.g., head, frend) including
derivational nouns (e.g., hug) have a “co-argument
structure” that needs to be distinguished from the co-
occurrence structure. The co-argument structure of
term w is a specification of the prototypical predi-
cate argument structure in which w serves as an ar-
gument. This is relevant only when w is not a gen-
uine predicate. For relevant information, refer to
Kuroda et al. (2009). It deserves a mention that co-
occurrence structure and co-argument structure are
identical in certain uses of relational terms, quite un-
fortunately.

Let me mention several confusing cases. On the
one hand, p6: “S M1 M2* ache” in Table 1 speci-
fies the argument structure of ache as a verb, rather
than the co-occurrence structure of ache as a noun.
Also, p5: “S O* M hug” in Table 2 specifies the
argument structure of hug as a verb rather than the
co-occurrence structure of hug as a noun. Their co-
occurrence structures must be p6′: “(S)(V) (O1) D
M ache” and p5′: “(S)(V)(O) D hug,” but they do
not give us desirable results. On the other hand,
p5: “(S)(V)(O) D head T” in Table 1 specifies the
co-occurrence structure of head rather than its co-
argument structure. Its co-argument structure should
be like p5′: “S head” with S matching Bill, but this
does not really fit the context of (4a). In the cur-
rent version of PDP, either (co-)argument structure
or co-occurrence structure is specified in this prior-
ity, and not both. Admittedly, this is not a system-
atic solution but a compromise was made to reduce
the complexity of the analysis. In the full version of
PDP, a constant may have multiple parses as far as
they are not incompatible. This is clearly desirable
4) In many languages, case-marking systems are not elaborated

enough to reflect the distinction between cases like ϕ2 and ϕ3.

for relational nouns.
The order of variables within a pattern is impor-

tant because patterns are expected to be as surface-
true a specification as possible of the predicate-
argument structure of lexical items. But in some
cases, the arrangement of variables cannot be
surface-true and generates a mismatch. For exam-
ple, p5: “S O* M hug” in Table 2 is not surface-true
in that it deviates from “S M hug O” which is a gen-
eralization of instances like she once hugged him.
To encode the positional deviation of variables, “*”
is used: α∗ encodes the positional deviation of α .
For example, O* in “S O* M hug” indicates its po-
sitional deviation.

2.2.2 Interpretation of PDPs. Under the brief ex-
planation above, the two PDPs read as follows: In
the PDP in Table 1, p1 says that Ann is the subject
of a certain verb, symbolized by V, which is either
transtive or intranstive. V is to be unified with gave.
p2 says that gave is a ditrantive verb: its subject, di-
rect object and indirect object are to be unified with
Ann, Bill and ache, respectively. p3 says that Bill
is the direct object of a ditrantive verb: its subject
is unified with Ann, its verb with gave and its indi-
rect object with ache. p4 says that a is the deter-
miner for a theme/target, which is to be unified with
ache. p5 says that head is a prenominal modifer to a
theme/targete, which is to be unified with ache. p6
says that hug is a transitive verb: its subject is to
be unified with Ann, its object with Bill and its two
modifiers are bound to a and head. If M1 means
anything, it would mean once when it is bound to a.
If M2 means anything, it would mean (in the) head.
Note that p6 allows us to state that Bill aches in the
head is embedded in the PDP of (4a).

In the PDP in Table 2, p1 says that Ann is the sub-
ject of a certain verb. p2 says that gave is a ditrantive
verb: its subject, direct object and indirect object are
to be unified with Ann, Bill and hug, respectively. p3
says that Bill is the direct object of a ditrantive verb:
its subject, verb and indirect object are to be unified
with Ann, gave and hug, respectively. p4 says that a
is the determiner for hug, its theme/target. p5 says
that hug is the verb: its subject and object are unified
with Ann and Bill. If a is bound to its modifier M, it
can imply S hug O once. Note that p5 allows us to
state that Ann hug(ged) Bill (once) is embeded in the
PDP of (4b).

2.3 Procedure
In the simplet form, the PDP of input e is peformed
in the following procedure:

(8) a. Step of segmentation: Segment e into a
list of units. Most simply, we have [u1, u2,
. . . , un] when e = u1 ·u2 · · ·un.



b. Step of pattern identification: For ui in
[u1, u2, . . . , un], find out a “pattern” pi that
specifies the predicate-argument structure
of ui in the optimal granularity.

where specifications of pi and p j can be inde-
pendent.

In the following, the explanation of segmentation
follows the explanation of pattern identification.

2.3.1 Essence of pattern identification. PDP is
still under construction because no implementation
is available for pattern identification, but I present
a rough sketch of it here by taking (4b) for exam-
ple. I expect that implementation is feasible using
a method of supervised machine learning such as
SVM.5)

Table 3: Initial state of PDP of (4b)

e=p0 Ann gave Bill a hug
p1 Ann gave Bill a hug
p2 Ann gave Bill a hug
p3 Ann gave Bill a hug
p4 Ann gave Bill a hug
p5 Ann gave Bill a hug

Table 4: Phase 1 of PDP of (4b)

e=p0 Ann gave Bill a hug
p1 Ann V O1 D O2
p2 S gave O1 D O2
p3 S V Bill D O2
p4 (S) (V) (O1) a T
p5 S V O1 D hug

PDP starts with the initial state like the one in
Table 3. This undergoes the process of abstraction
in the following sense. For every parse, all constants
except for the anchor (usually on the diagonal) are
abstracted by replacing them by labels such as S, O,
V, and P. Replacement of constants c1, c2, . . . , cn in
parse p = c1 · c2 · · ·a · · ·cn with anchor a is carried
out in such a way that constant ci is replaced by a
grammatical role/function that is defined relative to
a. Thus, p1: “Ann gave Bill a hug” is rendered into
the sequence “Ann V O1 D O2” because gave, Bill, a
and hug bear the roles of verb (V), direct object (O1),
determiner (D) for O2, and indirect object (O2) rel-
ative to Ann. The same holds for other parses. This
results in the specification in Table 4.6)

5) Theoretically, all we need is a high-precision training corpus
with enough coverage, but the means of preparing it is a dif-
ferent matter.

6) I omitted the details in constructing “(S)(V)(O1) a T,” which
requires the definition of theme/target T.

This does not end the PDP, however. The next
thing to do is to take care of the informational asym-
metry between the past and future. The presence of
any constants after the achor is less certain. This
means that variables need to be less specific after the
anchor than before. If this asymmetry is taken care
of, we finally have a PDP like the one in Table 2.

As mentioned above, variables like S, O, V, P, etc
encode what grammatical roles/functions constants
bear against an achor. For example, ache is a verb
inside p6 in Table 1 and hug is a verb inside p5 in
Table 2. But they are indirect objects of gave in p2 in
Tables 1 and 2. Note that uniqueness is not required
on the role assignment across the set of patterns. In
this sense, identification of grammatical relations is
relativized to each constant. Parallelism would be
impossible without it.

2.3.2 Essence of segmentation. Segmentation
need not be lexically based. It can be done sublexi-
cally or superlexically. If every u is a word, it gives
lexical PDP. If a u is a morpheme, this gives sublex-
ical PDP. Specifications of p5: “(S) (V) D head T”
and p6: “S M1 M2* ache” in Table 1 for head and
ache are cases of sublexical parsing.

If a u is a multiword unit, it gives superlexcial
PDP. An example is given in Table 5, where q1 is
the integration over p2, p4, p5 and p6 in Table 1.

Table 5: Superlexical PDP of (4a)

e Ann gave Bill a head ache
p1 Ann V
p3 S V Bill
q1 S gave O a head ache

Identification of superlexical units like q1=“S
gave O a head-ache” is useful, because q1, for one,
can be translated to “S embarrassed O.” With replac-
ing q1 by “S embarrased O,” we can paraphrase (4a)
into Ann embarassed Bill.7) This point relates to the
first question we addressed earlier, namely why we
have CAUSE(. . . ) for the semantics of give, which
was left aside for the memont. The most straight-
forward answer is that a paraphrase relation holds
between “S give(s) O” and “S cause(s) O” when O
contains elements that evoke a subevent. The evok-
ing elements in our cases are (head)ache and hug.

It should be also pointed out that pattern-based
description is useful in the treatment of paraphrases
because it can easily handle cases like Ann gave Bill
a big headache.

7) Of course, a database of such translation pairs need to be in-
dependently constructed, which is a topic beyond the scope of
this short paper.



Table 6: PDP of (1) where constants appear on the diagonal in italics, and variables in normal face.

p0 S. Publishing offered Mr. Smith a reimburse -ment last March
p1 S. Publishing V
p2 S offered O1 O2
p3 (S) (V) Mr. T
p4 S V D Smith
p5 (S) (V) (O) a (M) T
p6 S O* reimburse (M)
p7 S V -ment
p8 (S) (V) last T
p9 T M March

2.4 More details of PDP

2.4.1 Composition by superposition. PDP is
compositional but in a different way. In most tradi-
tional theories of syntactic structure, composition of
substructures s1, s2, . . . sn into a whole structure t is
achieved by means of substitution of certain “vari-
ables” in t by substructures. For example, Ann gave
Bill a headache results when Ann, gave, Bill, and
a headache are substituted for S, V, O1 and O2 in
the host structure “S V O1 O2” (or for NP1, V, NP2
and NP3 in the host structure “NP1 V NP2 NP3”).8).
This is not true of PDP, where superposition is used
instead. As Table 1 indicates, p1, p2, . . . , p6 are
superposed on each other to produce p0 = (4a). Su-
perposition of p1, p2, . . . , pn into p0 is column-wise
(feature-based) unification. Thus, substitution plays
no role in composition of p0 out of p1, 2, . . . , pn in
PDP. This is expected to reduce the computational
complexity.

2.4.2 Constraints on patterns. A pattern is a se-
quence of either lexical items, called constants, such
as Ann, gave, Bill, a, headache, . . . , or some of the
variables listed in (9):

(9) a. Predicate types: V (verb), U (auxiliary
verb), P (preposition, particle and post-
position), R (underspecified type between
V and P), J (junction)9), and A (adjec-
tive).10)

b. Argument types: S (subject), O (object)
[O1 direct object and O2 indirect object.
In general, On for the nth object of a pred-
icate], C (nominal complement of be-type
verb)

c. Functional types: D (determiner), and Q
(quantifier)

8) Notably, grammar is responsible for generation of structures
like S V O1 O2 or NP1 V NP2 NP3.

9) This is a generalized class of conjunction and disjunction.
10) There is no type for adverbials because they are usually not

referred to by other lexical units.

d. Other types: T (theme/target of a deter-
miner), M (modifier), and X (unknown
type: use needs to be avoided whenever
possible).

e. Hybrid types: types like α +β (e.g., S+V,
P+O2) and α = β = γ = · · ·. The former
encodes the amalgamation of type α and
β . The latter encodes the multiplicity of
labels.

The list of pattern variables here is not meant to be
exhaustive.

To make PDP descriptively adequate, patterns
need to be well constrained. In respect to the formu-
lation of such constraints, PDP is still under develp-
ment. It is still unclear what makes patterns valid
or invalid. But we can state a few requirements on
good patterns:

(10) a. A pattern needs to be a description of an
argument structure within a minimal span.

b. A pattern is valid when it expresses a gen-
eralization as surface-true as possible of
the predicate argument structures of a lex-
ical item or a series of lexical items.

3 Parallel relational parsing with PDP

3.1 Further issues

After the brief introduction to PDP above, let us now
turn to the analysis of (1), which is a case more com-
plicated than two cases in (4). The PDP of (1) is
given in Table 6, which illustrates distinctive fea-
tures of PDP.

3.1.1 Effects of parallelism. In the first place,
PDP allows for sublexical parses without introduc-
ing contradiction with lexical parses. As mentioned,
the problem is how to integrate the parses for offer
and reimburse in S. Publishing offered Mr. Smith re-
imbursement last March [=(1)]. The PDP solution
is given in Table 6. More specifically, the peaceful



coexistence of p2 and p6 in Table 6 shows that the
integration is successful.

There is a subtle point related to the interpreta-
tion of last March.11) It is possible to read it so that
reimbursement was made in a month referred to as
last March. But this is only a suggestion because
the interpretation is no longer valid in cases like:
The company offered Mr. Smith reimbursement last
March but he declined. This contrast suggests that
the completion of the reimbursement by Mr. Smith
is implied only when the completion of the com-
pany’s offer of it is factive. This confirms that the
modification by last March to offer is direct and its
modification to reimburse is indirect and probably
conditional. This effect is more or less predictable
from the information encoded by p9: “T M March”
in Table 6.12)

There are still some subtleties in PDP, however.
First of all, I have to admit that it is not true that ev-
erything in PDP has a precise interpretation. This is
actually false. There are several cases in which pat-
terns fail to receive straightforward interpretations.
For example, it is not clear what -ment means in p7
in Table 6. My best guess is that it serves as a kind
of auxiliary here. With this problem remaining, PDP
should turn out be useful for limited purposes.

3.1.2 Effects of distributed representation. An-
other interesting characteristics of PDP is that it al-
lows us to assign multiple grammatical roles to a
lexical item. In fact, it allows us to directly en-
code “hidden” roles which are usually indirectly en-
coded using transformations or lexical redundancy
rules. For example, “subjects” are assigned to im-
plict verbs like ache in (4a) and hug in (4b). Check
PDPs in Tables 1 and 2 for this. This means that
PDP is able to encode grammatical relations in term
of distributed representation.

But subjects are not exclusively assigned to verbs
and adjectives: they are assigned to prepositions,
particles (e.g., up), adverbs and adverbials, too. This
point is illustrated in the PDP of (11) presented in
Table 7.

(11) On this note, C-in-C gave up the idea of retain-
ing Ben in the front.

In PDP, all relational kinds of constants are expected
to have subjects of their own.13)

11) This point was brought to my attention by one of the anony-
mous reviewers, for which I’m grateful.

12) This is also related to a subtle point that it is discouraged to
have (M) in p6: “S O* reimburse (M)” because specification
of unseen elements, which occurr in the future, needs to be less
specific.

13) By this, it is safe to state that PDP captures the effects of
“trace” without positing movement and those of pro and PRO
without positing specific configuration of phrase structure.

3.1.3 Sparseness somehow remedied. Sparse-
ness of the label distribution in Table 7 suggests that
syntactic structure consists mainly of local, short-
distance dependencies. But there are special con-
structions like support verb constructions (e.g., S
give up the idea of V-ing = { p5, p6, p7, p8, p9,
p11}) that can extend localities to some extent.14)

From the PDP in Table 7, we can get at least the
following predications:

(12) a. C-in-C gave up the idea [presupposed by
the semantics of On this note].

b. C-in-C (wanted to) retain Ben [presup-
posed by the semantics of give up the
idea].

c. Ben (was) in the front [presupposed by the
semantics of retain].

They justify, in combination, that C-in-C are sub-
jects of gave up and retain and Ben is the subject of
(be) in the front.

What of does in (11) is, as specified by p9,
bridges the two propositions encoded by idea and
retain. In this respect, it is desirable to detect that “S
think of V-ing and “S want to V” are in the relation
of a paraphrase. Relating to this, it should be added
that C-in-C is identified as the subject of think if we
can somehow identify that the relation of “S idea of
V-ing” and “S think of V-ing” is of a paraphrase, but
this is not specified in the PDP in Table 7. PDP is
not responsible for the detection of paraphasability.

As pointed out in §1, it is often the case that inef-
ficient parses increases the severity of data sparse-
ness. Inefficiency comes from the sparseness of
parses. Parallel distributed sublexical parses pro-
vided by PDP would be useful for remedying this.

3.2 Related work
3.2.1 Word Expert Parsing. There is an impor-
tant conceptual precursor of PDP. Word Expert Pars-
ing (WEP) was developed by Small (1979; 1983;
1988) to implement the idea of “parsing as coop-
erative distributed inference,” and extended to Par-
allel Word Expert Parsing (PEP) by researchers
like (Hahn, 1986; Devos et al., 1988).

WEP/PEP has many things in common with
PDP. Simply speaking, PDP could be seen as merely
adding linguistic sophistication to WEP/PEP. There
is, however, an essential difference. First, WEP/PEP
only targets the construction of semantic interpreta-
tion, or more precisely it only targets word sense
disambiguation tasks, and accordingly does not re-
ally “parse” the text, though it is called a framework
for text parsing. Second, WEP/PEP embodies a very
14) Note incidentally that S give up the idea of V-ing can be a

paraphrase of “S stop thinking of V-ing.” They are both cases
of subject-to-subject raising.



Table 7: PDP of (11) [constants in italics, and variables in normal face]

p0 on this note X gave up the idea of retain ing B. in the front
p1 on O (S) V=T
p2 P this T
p3 P D note (S) V=T
p4 X V
p5 S gave P+O2 O1
p6 (M) up S
p7 (S) (V) (M) the T
p8 S V (M) D idea
p9 S of O
p10 S retain O
p11 S V ing
p12 S V B.
p13 S in O
p14 (S) (P) the T
p15 S P D front

simplistic view of the lexicon in the sense that it de-
fines “words” as elementary units of syntactic repre-
sentation and tries to directly associate them to se-
mantic/conceptual structures. This means that there
is no place where context-sensitive encodings like
p3 = “S offered O1 O2,” p4 = “S V D Smith,” and
p5 = “S V O1 a O2” play any role (some familiar
examples of such patterns are “multi-word expres-
sions” (Sag et al., 2002) and “constructions” (Fill-
more, 1988; Goldberg, 1995)). In contrast, patterns
are fundamental units of linguistic representations in
PDP, and more importantly, parallelism is required
to handle them in the most natural way.

Table 8: Simplified form of MST Parse of (1)

Lemma TAG Target Function
1 On IN 7 VMOD
2 this DT 3 NMOD
3 note NN 1 PMOD
4 , , 7 P
5 the DT 6 NMOD
6 C-in-C NN 7 SUB
7 gave VB 0 ROOT
8 up RP 7 VMOD
9 the DT 10 NMOD

10 idea NN 7 OBJ
11 of IN 10 NMOD
12 retaining VB 11 PMOD
13 Ben NN 12 OBJ
14 in IN 12 VMOD
15 the DT 16 NMOD
16 front NN 14 PMOD
17 . . 7 P

3.2.2 Dependency parsing All parses in PDP can
be seen as distinct runs of dependency parsing that

run in parallel. What distinguishes it from other for-
malisms is that it tries to make use of parallelism.
For one, PDF does not avoid crossing-links (Mc-
Donald et al., 2005). To make this point clear, take
the analysis of (11) for example.

MST Parser (v0.4.3) produces the dependency
parse in Table. 8. Comparison of Table 7 with Ta-
ble 8 reveals that the dependency parse in Table 8 is
a subset of the PDP in Table 7. In other words, PDP
describes whatever dependency parsing describes.

3.2.3 Link Grammar parsing Link Gram-
mar (Grinberg et al., 1995; Sleator and Temperley,
1993) is a natural extension of dependency parsing.
PDP’s philosphy is close to Link Grammar’s, but
there are two differences: First, PDP aims at analy-
sis of (co-)argument structures at morphological lev-
els. Second, the there are fewer types of labels than
Link Parser. This is because PDP makes use of dis-
tributed representation. Second, PDP does not try to
reduce parses into a combination of binary relations.
Rather, it tries to make use of larger units identifi-
able as “constructions” in the sense of Construction
Grammar (Croft, 2000; Fillmore, 1988; Goldberg,
1995) or “patterns” in the sense of Pattern Gram-
mar (Hunston and Francis, 2000).

3.2.4 Autolexical Syntax Sadock (1991) devel-
oped a theory of syntax that he refers to as Autolexi-
cal Syntax. The theory attempts to integrate the syn-
tactic analysis of words and that of morphemes. The
idea of PDP is influenced by Sadock’s theory. In
fact, PDP is an attempt to maximize the benefit from
parallelism in that every valid unit of an input, either
word or morpheme, is assigned a distinct parse.

3.2.5 Word Grammar PDP is also influenced by
Word Grammar developed by Hudson (1984), which



implements the idea of parallelism. PDP added dis-
tributedness to the kind of parallelism it embodies.

3.2.6 XTAG-based Supertagging In its use of su-
perposition and parallelism, PDP is close to XTAG-
based supertagging (Bangalore and Joshi, 1999).
The difference is that supertagging tries to assign
phrase-structure descriptions to lexical items, which
is not assumed in PDP. Superposition of patterns,
simple flat structures, is easier to implement than
synchronization of trees.

PDP does not require that all parses share the sin-
gle root. Simply, its distributedness is incompatible
with the single-root requirement. Thus, PDP is dis-
tanced from any framework that tries to compile a
single-rooted, acyclic directed graph for parse. Im-
portantly, however, PDP shares the idea of partial
parsing with supertagging. Humans are known to be
very good at ignoring irrelevant pieces of informa-
tion: their performance almost appears noise-proof,
whereas noisy input is often fatal for normal parsers.
Supertagging is successful at capturing this impor-
tant feature of human linguistic performance.

4 Conclusion
In this short, far from a complete paper, I presented
arguments for parallel distributed parsing (PDP). Its
is motivated for the integration of lexical and sub-
lexical parses. I must admit that PDP is still under-
developed, as many technical details required for se-
rious parsing are missing. But this does not mean, I
hope, that it cannot be a new model of syntactic de-
scription. I say this because it may give us a clue for
overcoming the data sparseness problem from which
many NLP researchers suffer.
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